

FinBench: The new LDBC benchmark targeting financial scenario

Shipeng Qi

(with contributions from members of the FinBench Task Force)

Benchmark Overview

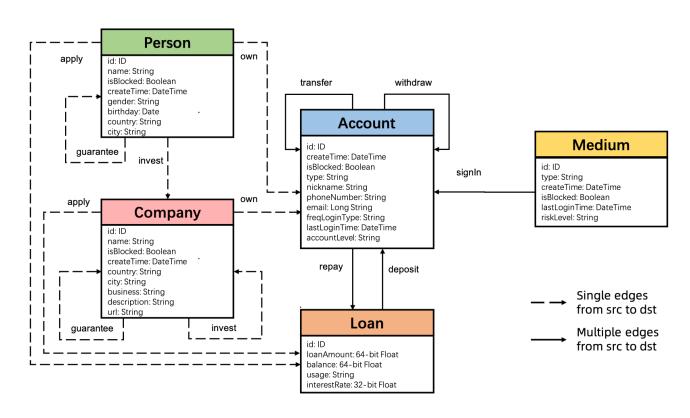
FinBench Motivation

• **SNB**, Social Network Benchmark, is designed based on social network scenarios, which is limited when applied to the financial service industry.

• **FinBench** objective is to design a high-quality benchmark for evaluating the performance of graph database systems in financial scenarios, e.g. antifraud and risk control, based on financial data patterns and query patterns.

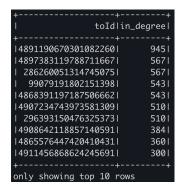
Key Features in FinBench

- Dataset
 - PowerLaw distribution
 - Multiplicity
 - Hub Vertex
- Transaction Workload
 - Read-write query
 - Special graph patterns
 - Time-window filtering
 - Recursive path filtering
 - Truncation


Brief of the initial version

- Standard Design: all key features in proposal implemented
- Workload: Transaction Workload, including 12 complex read queries, 6 simple read queries, 19 write queries and 3 read-write queries
- Dataset: Up to SF10 scale supported
- Implementation on 3 systems: TuGraph, Galaxybase, and UltipaGraph
- Collaboration: 9 vendors in Task Force and 6 developers

Data Design and Generated Datasets


- Data Schema
- Data Distribution
- Datasets Statistics

Data Schema

Data Distribution: Transfer Edge

- Degree: PowerLaw Distribution
- Asymmetric directed graph
- Hub vertex: degree increases with scale
 - MaxDegree = 1000 in SF1
 - MaxDegree = 10000 in SF10
 - Larger scale to be supported

+	+
fromId	toId multiplicity
+	+
4837428949749347364 48911	.906703010822601 671
165788761282584041 2862	60051314745075 53
183521684815353485 2409	42580064328271 51
4752986456736143480 48447	47299143816836 43
4902731144346222798 48216	66351053553660 40
14761993655990886968148785	33 33 33
4902731144346222798 47788	82154593534224 31
4863043172630020163 48965	38694858587751 291
258394028620386533 2181	.43106950763621 29
297800525359880817 2862	160051314745075 28
+	+
only showing top 10 rows	

Num of accounts: 26347

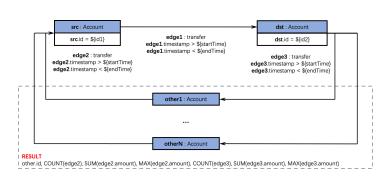
Num of transfer edges: 138209

Average Degree: 5.245720575397579

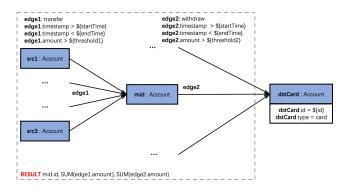
Average Multiplicity: 1.616574068658986

Transaction Workload

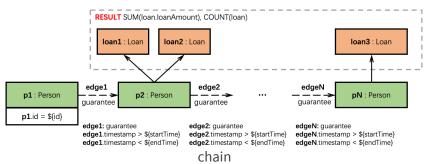
- Transaction Workload
- Time Window Filtering
- Recursive Path Filtering
- Read-Write Query
- Truncation
- Query Mix
- Transaction Workload Driver


Transaction Workload

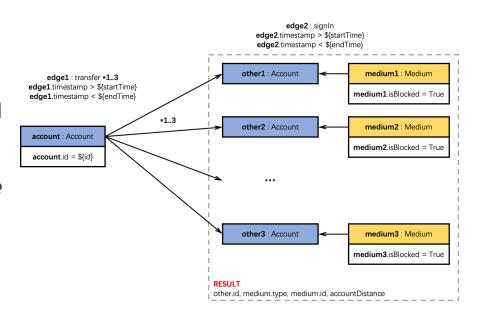
Scenario: financial activities among accounts, persons, companies, loans and media


Queries:

- 12 complex reads: match exact patterns including cycles and trees(see next slide)
 starting from one or two vertices
- 6 simple reads: discover the neighbourhood of an Account node
- 19 write queries: inserts, updates, deletes(cascade deletion)
- 3 read-write queries: transaction-wrapped complex reads


Transaction Workload: Example Patterns

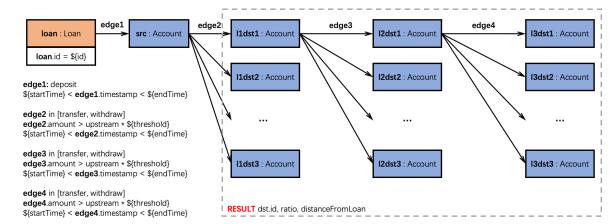
Cycle
[Ref: Transaction Complex Read 4]


Tree
[Ref: Transaction Complex Read 6]

[Ref: Transaction Complex Read 11]

Time Window Filtering

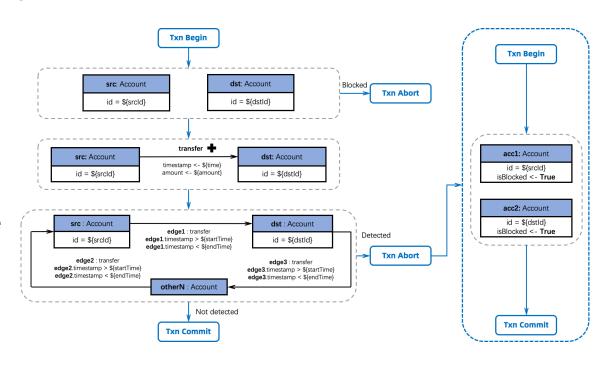
- Fact: queries only look back in a limited time window
- Filtering: filter edges between startTime
 and endTime in traversal



Blocked medium related accounts [Ref: Transaction Complex Read 1]

Recursive Path Filtering

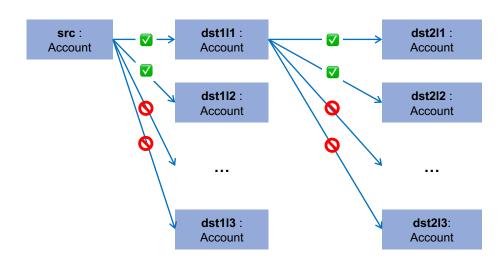
Assuming: A -[e1]-> B -[e2]-> ... -> X


- Timestamp order: e1 < ... < ei
- Amount order: e1 > ... > ei

Transfer trace after loan applied [Ref: Transaction Complex Read 8]

Read-Write Query

- Transaction-wrapped complex reads (risk control stategy)
- If the complex read matches, commit the transaction with write query. Otherwise, transaction abort



Transfer under transfer cycle detection strategy [Ref: Transaction Read Write 3]

Truncation

- Truncate less-important edges to avoid complexity explosion when traversing
- Truncating is actually sampling
- TruncationLimit and truncationOrder is defined to ensure consistency of results.

For example, keep only the top 100 edges in order of timestamp descending

Benchmark Suite

Datasets Statistics

Supported Scale Factor	V	E
0.01	8663	61674
0.1	64485	610658
0.3	192971	1830891
1	643241	6091820
3	1928439	18243343
10	6069955	51889416

FinBench datasets of SF0.01 to SF10 are published at the <u>Google Drive</u>. These datasets were all generated using csv serializers in the initial version.

Note: please see the tables in **Appendix A** for detailed statistics

Transaction Workload Driver

Inherited from SNB Interactive driver, the driver has 3 modes of operation, all starting with a database containing the initial data set.

1. Generate validation data set

- single-threaded, sequential execution
- output: validation results

2. Validate implementation

- single-threaded, sequential execution
- input: validation results
- output:
 - passed/failed validation
 - o if failed: expected vs. actual results

3. Execute benchmark

- multi-threaded, concurrent execution
- Use TCR to control the load scale
- output:
 - passed/failed schedule audit
 - throughput (operations per second)
 - per-query performance results

Roadmap and acknowledgement

Roadmap

Version	Estimated Time	Features
0.1.0	Mid of 2023	Runnable and auditable
0.2.0	End of 2023	Larger scale data generationOptimize parameter curationQuery mix profiling and design
0.3.0	2024	New workload: Analytics workload

Acknowledgement

Task Force Members

Developers

Name	Affiliation
Shipeng Qi	Ant Group
Bing Tong	CreateLink
Changyuan Wang	Vesoft
Yang Bin	Ultipa
Shenghao Zhang	StarGraph

Resources

- Specification: https://github.com/ldbc/ldbc_finbench_docs
- Benchmark Suite
 - https://github.com/ldbc/ldbc_finbench_driver
 - https://github.com/ldbc/ldbc_finbench_datagen
 - https://github.com/ldbc/ldbc finbench transaction impls
 - https://github.com/ldbc/ldbc_finbench_acid
- Datasets: https://drive.google.com/drive/folders/1tURBIJE56ZNC9YvMtug31peYD5csizCa?usp=sharing
- Certification audit packages: https://drive.google.com/drive/folders/10QXrz2CkQke7SE9KWBiMeEn0KYx-QCOl?usp=sharing

The graph & RDF benchmark reference