
Interactive / complex / 7
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 7
title Recent likers

pattern

description

Given a start Person with ID $personId, find the most recent likes on any of start Person’s Mes-
sages. Find Persons that liked (likes edge) any of start Person’s Messages, the Messages they liked
most recently, the creation date of that like, and the latency in minutes (minutesLatency) between
creation of Messages and like. Additionally, for each Person found return a flag indicating (isNew)
whether the liker is a friend of start Person. In case that a Person liked multiple Messages at the
same time, return the Message with lowest identifier.
Validation rule: Depending on whether the system-under-test supports leap seconds or uses
UTC-SLS (UTC with Smoothed Leap Seconds), a difference of 1 minute can occur between the
minutesLatency results of two correct implementations when the time interval includes June 30,
2012, when there was a leap second. Therefore, the minutesLatency value is validated using a
tolerance of 1 minute.

params 1 $personId ID

result

1 friend.id ID R friend.id = personId is allowed
2 friend.firstName String R

3 friend.lastName String R

4 likes.creationDate DateTime R

5 message.id ID R

6

message.content or
message.imageFile (for
photos)

Text R

7 minutesLatency 32-bit Integer C
Duration between the creation of the
Message and the creation of the like, in
minutes.

8 isNew Boolean C
False if person and friend know each
other, True otherwise

sort
1 likes.creationDate ↓

2 friend.id ↑

limit 20
CPs 2.2, 2.3, 3.3, 5.1, 8.1, 8.3

relevance

This query looks for paths of length two, starting from a given Person, moving to its published messages and then
to Persons who liked them. It tests several aspects related to join optimization, both at query optimization plan level
and execution engine level. On the one hand, many of the columns needed for the projection are only needed in
the last stages of the query, so the optimizer is expected to delay the projection until the end. This query implies
accessing two-hop data, and as a consequence, index accesses are expected to be scattered. We expect to observe
variate cardinalities, depending on the characteristics of the input parameter, so properly selecting the join operators
will be crucial. This query has a lot of correlated sub-queries, so it is testing the ability to flatten the query execution
plans.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit 9005c16 Page 1 of 1

https://ldbcouncil.org/ldbc_snb_docs/interactive-complex-read-01.pdf
https://ldbcouncil.org/ldbc_snb_docs/interactive-complex-read-02.pdf
https://ldbcouncil.org/ldbc_snb_docs/interactive-complex-read-03.pdf
https://ldbcouncil.org/ldbc_snb_docs/interactive-complex-read-04.pdf
https://ldbcouncil.org/ldbc_snb_docs/interactive-complex-read-05.pdf
https://ldbcouncil.org/ldbc_snb_docs/interactive-complex-read-06.pdf
https://ldbcouncil.org/ldbc_snb_docs/interactive-complex-read-08.pdf
https://ldbcouncil.org/ldbc_snb_docs/interactive-complex-read-09.pdf
https://ldbcouncil.org/ldbc_snb_docs/interactive-complex-read-10.pdf
https://ldbcouncil.org/ldbc_snb_docs/interactive-complex-read-11.pdf
https://ldbcouncil.org/ldbc_snb_docs/interactive-complex-read-12.pdf
https://ldbcouncil.org/ldbc_snb_docs/interactive-complex-read-13.pdf
https://ldbcouncil.org/ldbc_snb_docs/interactive-complex-read-14-v1.pdf
https://ldbcouncil.org/ldbc_snb_docs/interactive-complex-read-14-v2.pdf

